Course no :1.1	Course Name:	Credits			
	Fundamental Of Computers	L-3	T-1	P-0	Total-4
			4	4	1

This course is designed with an objective so that the students will be able to

- Discuss about computers and their applications.
- Explain fundamental concepts of computer hardware and software and become familiar with a variety of computer applications, including word processing, spreadsheets, databases, and multimedia presentations.
- Explore about computer viruses and the operating system environment, both Windows and Linux.

Learning Outcome:

At the end of the course, students are expected to be able to:

- Identify computer hardware and peripheral devices
- Familiar with software applications
- Discuss about file management
- Accomplish creating basic documents, worksheets, presentations and databases
- Distinguish the advantages and disadvantages of different operating systems
- Explore about the computer viruses.
- Identify computer risks and safety.

PART-A Theory (TH:1.1)

Total Marks: 100

(In Semester Evaluation -40 & End Semester Evaluation -60)

Unit 1: Introduction to computer and information technology.

Brief history of development of computers, computer system concepts, capabilities and limitations, types of computers: Analog, Digital, Hybrid, general, special purpose, Micro, mini, mainframe, super computers, generations of computers, personal computers, types of personal computers – Laptop, Palmtop etc.

Unit 2: Computer Organization and working:

Basic components of computer system, Input devices, output devices, storage devices.

Unit 3: Computer software:

Need of software, types of software, system software and application software, programming languages, machine, assembly, high level, 4GL, their merits and demerits. Application software-word processing, spread sheet, presentation graphics, database management software.

Unit4: Operating System

Introduction to Computer virus, Introduction to Operating Systems (Disk operating system, Windows, Linux, Unix)

Part-B Practical (PR:1.1)CreditL:0T:0P:2Total:1

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation –30)

- Basics of Ms-Word, Ms-Excel, Ms-PowerPoint and Ms-Access
- > Basics of DOS and Unix commands, SHELL PROGRAMMING
- Basic Windows and Linux operations.

Marks: 15

Marks: 15

Marks: 15

Marks: 15 ions, types of

- 1. Sinha P.K., "Computer Fundamentals", 2012, Sixth Edition, BPB Publication
- 2. Rajaraman, V., "Computer Fundamentals", 2012, Sixth Edition, PHI
- 3. Sirivastava S.S,"Ms-Office", 2015, Laxmi Publication

Reference Books:

- 1. Ram.B., "Computer Fundamentals:Architecture and Organization",2013,5th Edition, New Age Publication
- 2. Goel.A.,,"Computer Fundamentals", 2011 Reprint, Pearson Education

Discussion:

- Organization of the computers
- Generation of languages
- Ms-Office
- DOS, Windows, Linux and Unix

Course no:	1.2	Course Name:				Cr	edits	
		Mathematics-I	L:	3	T:	1	P: 0	Total: 4
Objective:								
	0	ned with an objective to						
\triangleright	Illustra	te the ideas and techniques from disc	crete	mathe	emati	cs w	hich are	widely used
	-	puter science.						
		ce mathematical logic among studer		-				
		ce set, function, relations, permutat						n are used in
K		e management, Programming Techr						1 1.
		p the use of matrix algebra techni	-			•	0	1
Loomingo		n the vertices of a graph and movem	ient o	1 rodo	ots an	a ma	any otne	r areas.
Learning or	itcomes							
On completi	on of the	e course, the students will be able to	:					
Dete	 Define and explain various methods pertaining to Combinatorics, Matrix Algebra Determinants and apply them through computer programs. Explain and apply the basic methods of discrete mathematics in Computer Science. 							-
		Theory (TH:1.2	()					
		Total Marks: 10	0					
	(In	Semester Evaluation – 40& End Se	emest	er Eva	luati	on –	60)	
Unit I – Ma		-						Marks: 12
-	-	– syntax, semantics, laws of deduc re normal form, First order logic					•	
Unit II – Di	screte S	tructures:						Marks: 12
Sets; Cartesi	an produ	uct, Relations – their types; Function	ns, Fu	ızzy se	et –co	once	pt.	
Unit III C	mplov	Numborg						Marks: 12
Unit III –C	-	an ordered pair, operations on co	mnla	v num	here	De	-Moivre	
roots of com		1 1	mpic	A nun	10015	, DC	-10101010	s meorem,
	ipiex nui							
Unit IV – M	Iatrix A	løehra:						Marks: 12
		of matrix and determinants, Ran	k and	d inve	arce d	of a		
-	-	- consistency conditions.	K and		150 0	01 a	maurx,	solution of
Unit V – Ma	athemat	ical Statistics:						Marks: 12
	s, Comb	inations, Probability, Collection of	data,	freque	ency	distr	ibution,	

Text Books:	
	 Biggs N.L., "Discrete Mathematics", 2nd Edition, Oxford University Press, 2009. Goldberg J. L., Potter M. C., Edward A. "Advanced Engineering Mathematics"; Third Edition, Oxford University Press, 2005.
Reference Boo	 Lipschutz S., Lipson M. L., Patil V. H., "Discrete Mathematics (Schaums Outlines)", 3rd Edition, Tata McGraw Hill,2013. Grimaldi R.P., "Discrete and Combinatorial Mathematics, An Applied Introduction", 5th Edition, Pearson,2003. Sharma K.J., "Discrete Mathematics", ^{3rd} Edition, Macmillan India Limited,2010
Discussion	
	Basics of Mathematical logic, Example oriented.

Course no : 1.3	Course Name:		С	redits	
	Digital Design	L	Т	Р	Total
		2	1	1	1

This course is designed with an objective, so that the students will be able to

- > Describe the fundamental principles of digital design.
- Represent and manipulate decimal numbers in different coding systems.
- > Gaining experience with several levels of digital systems, from simple logic circuits to programmable logic devices and hardware description language, analysis and design is another likely outcome

Learning Outcome:

After completion of this course ,the students will be able to

- Differentiate different number systems.
- ➢ Write Boolean algebra and the operation of logic components.
- Construct logic circuit using logic gates.
- > Design both combinational and sequential logic circuits.

PART-A Theory (TH:1.3)

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation –60)

Unit I: Representation of information:

Review of number systems and their conversions: Binary, decimal, octal and hexadecimal; Positive and negative numbers, Gray codes.

Unit II: Arithmetic operations and Character codes:

Addition, subtraction, multiplication, division of numbers, 1's complement 2's complement of binary numbers, subtraction by using 1's complement and 2's complement methods. BCD, ASCII, codes for error detection and correction, concept of hamming distance

Unit III: Logic Design:

Boolean algebra & Switching functions, minimization and realization using logic gates. Representation of logic functions-SOP and POS form, K-map presentation.

Unit IV: Combinational circuits

Designing of Combinational circuits: Adder, subtractor, multiplexers, de multiplexers, decoders, encoders.

Unit V: Sequential circuits Sequential logic: Latch, Flip flops, Registers and Counters.

Marks: 10

Marks: 14

Marks: 14

Marks: 10

PART-B Practical (PR 1.3)

CreditL:0T:0P:2Total:1

Total marks:50

(In Semester Evaluation –20 & End Semester Evaluation –30)

- > Implementation of logic circuit using logic gates.
- > Experiments on different logic circuits like Half adder, Full subtractor .

Text Books:

- 1. Mano.M.M, "Digital Logic and Computer Design", Pearson ,2004
- 2. Wakerly J.F.,"Digital Design: Principles And Practices", Pearson, 4th Edition, 2008

Reference Books:

- 1. Kohavi,Z, "Switching Finite automata theory, 2/e" Tata Mcgraw Hill, 1995.
- 2. Salivahanan.S and Arivazhagan.S, "*Digital Circuits and Design*", Vikas Publishing House PVT LTD,4th Edition,2012

Course No:	Course Name:	Credits			
1.4	Communicative English and Personality	L:3	T:1	P:0	Total: 4
	Development				

The course is designed with an objective to

- Acquire better communication skills.
- > Have a better personality which can help in dealing with different situations.
- > Have a positive attitude and constructive professional mind
- Listen for different needs and ideas

Prerequisite: Course : Nil

Learning Outcome:

On completion of the course, students will be able to:

- > Exhibit professional attitude in their career perspectives.
- Show better communication skills
- Develop grooming techniques
- > Build a constructive professional personality

Theory (TH:1.4)

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation –60)

Unit I: **General Introduction:**

Importance of English its Position, Communicating in English: Difference between the spoken and the written form, How to start dealing with hesitation and shyness.

Pronunciation:

English vowels and consonants (RP), Getting to know the IPA, Words generally mispronounced-she, see, seat, cheat, etc, Difference between spelling and pronunciation, Choice of a proper model, Practical exercises

Unit II: Conversation:

Starting a conversation, Things to be kept in mind while engaging in conversation-fluency, accuracy, appropriateness, Planning, Turn taking, Practical exercises.

Situational Conversation:

Facing an interview board, Telephone talk, Wishes etc., Conversation with elders, friends, strangers etc., Terms related to different professions (Banking, Travel agency, Business etc.), Public speaking (Addressing a meeting; Debate; Group Discussion etc.), Practical exercises.

Unit III: Personality Meaning

Personality determinants, personality traits -theory of personality - development of personality from infancy to maturity, emotions and personality

Unit IV : Attitude

Concepts of attitude, formation of attitude, types of attitude, change of attitude values: concepts of values, types of values and behavior habits learning and unlearning of habits.

Unit V: Motivation

Meaning of motivation, nature of motivation, need of motivation personality development self development steps of personality developments.

Marks :10

Marks :10

Marks :15

Marks :15

- 1. Bansal, R.K. and J.B. Harrison, "Spoken English for India", Orient Longman.
- 2. Thorat, Ashok et al., "Enriching Your Competence in English", Orient Longman
- 3. Singh, Vandana., "The Written Word", Oxford Publication

Discussion:

- How to write curriculum vitae
- Group discussion
- Mock interview

	Course no: 1.5	Course Name:		С	redits	
		Programming with C	L: 2	T: 1	P: 0	Total: 3
Objec	tive: The course is design	ed with an objective to				
×	Developing programmin	g logic using C.				
Prere	quisites:					
	Basic reasoning abilities					
Learn	ing Outcome: On comple	etion of the course, students wi	ill be abl	e to:		
	Write programs using C	as a languaga				
	Write programs using C	logy used in computer program	mina			
		g programs in C language.	ming			
	Use different data types					
		ing decision structures, loops a	nd functi	ons		
	Design programs myory	ing decision sudctures, toops a	iu iuncu	0115.		
		Part A :Theory (TH:1.5)				
		Total Marks: 100				
	(In semester	evaluation 40 & End semester	evaluation	on 60)		
	``			,		
Unit 1	: Introduction to 'C' La	nguage			\mathbf{M}	Iarks: 12
Chara	cter set, Variables and Ic	lentifiers, Built-in Data Types	s, Variab	le Defi	nition.	Arithmetic
operat	ors and Expressions, C	onstants and Literals , Simp	ole assig	gnment	statem	ent, Basic
input/	output statement, Simple '	C' programs				
Unit 2	2: Conditional Statement	s and Loops			Μ	arks: 12
Decisi	on making within a progra	am, conditions, Relational Oper	rators, L	ogical (Connecti	ves,if
statem	ent, if-else statement ,Loo	ops: while loop, do while, for lo	op, Nest	ed loop	s, Infini	te loops,
Switch	n statement, structures Pro	gramming.				
Unit 3	3: Arrays & Functions				I	Marks:12
One d	imensional arrays: Array 1	nanipulation; Two dimensional	l arrays,			
Top-d	own approach of problem	solving, Modular programming	g and fur	nctions,	Return	Type,
_		Passing arguments to a Function				
	sive Functions, arrays as f				,	-),
Recui	sive i unetions, urity's us i	unerton arguments.				
I Init /	: Structures				ז	Marks: 12
		n, structure assignment, nested	structure	struct		
		structures, structures containing		, 51 400	ares und	10110110110,
2.1.400			,			
Unit 5	: Pointers & File Proces	sing			I	Marks: 12
		e declaration, pointer assignm	ent, poir	nter ini		
		ers, Arrays and Pointers, point	-			-
		losing of a file, Reading from a				
openn	-5 ··· · various modes and e	issing of a me, reading nom a			u inc	•

Part B : Practical (PR:1.5) Credit Total:2 L:0 T:0 P:4

Total Marks: 50

(In semester evaluation 20 & End semester evaluation 30)

- Introduction to vi editor
- Program combining control structure and array.
- Searching, Insertion, Deletion. Finding the largest/smallest element in an array.
- ➢ Basic matrix operations.
- Programs using functions & pointers.
- Programs using structures.

Discussion:

Emphasis should be given to develop programming logic.

Text Books:

- Gottfried Byron "*Programming with C*" 3rd edition, Tata McGrawhill, 2010
 Balaguruswami, D "*Programming with ANSI-C*" 6th Edition, Tata McGrow Hill, 2012.

Reference Books:

- 1. Brian W. Kernighan, Dennis M. Ritchie,"The C Programming Language (Ansi C Version) "latest reprint, Prentice Hall India Learning, 1990.
- 2. Dromey, R.G. "How to solve it by Computer", latest reprint, Prentice, 2011.

Course no: 2.1	C	ourse Name:	Credits				
	Ma	athematics-II	L: 3	T:	1	P: 0	Total:4

This course is designed with an objective to

- > Describe problems of differential calculus and integral calculus.
- ➢ Introduce the idea of double and triple integral.
- Appreciate the purpose of using transforms to create a new domain in which it is easier to handle the problem that is being investigated.

Learning outcome

On completion of the course, students will be able to:

- Solve problems of differential calculus and integral calculus.
- > Explain the idea of definite and multiple integrals.
- ➢ Find the Laplace and its inverse transforms of a function.

Theory (TH:2.1)

Total Marks: 100

(In Semester Evaluation – 40& End Semester Evaluation –60)

Unit I – Introduction to Differential Calculus:

Limits, continuity and differentiability, ordinary differentiation, partial differentiation, indeterminate forms.

Unit II-Expansion of functions:

Rolle's Theorem, MVTs, Taylor's and Maclaurin's theorems, Euler's theorem on homogeneous functions.

Unit III-Maxima and Minima:

Maxima and minima of functions of single variable and two variables.

Unit IV - Integral Calculus:

Indefinite integral, definite integrals, reduction formulae, application of integral calculus – length, area, volume. Idea of multiple integrals.

Unit V - Transform Calculus:

Laplace Transforms, Inverse Laplace Transform.

Marks: 12

Marks: 12

Marks: 12

Marks: 12

- 1. Kreyszig E. "Advanced Engineering Mathematics", Tenth Edition, Wiley, 2010.
- 2. Ayres F., Mendelson E. "Schaum's Outline of Calculus", 6th Edition, McGraw Hill Education, 2013.

Reference Books:

- 1. Silverman R.A., "*Essential Calculus with Applications*",5th Edition, Dover Publications,2014.
- 2. Garg R.L., Gupta N., "Engineering Mathematics", 1st Edition, Pearson, 2015.

Discussion

- Example oriented.
- Proof of theorems not required.

Course Code:	Course Name: Credits				
2.2 Data Structures		L:3	T:0	P:0	Total:3
	1 1 1 1				

Objective: The course is designed with an objective to

- > Demonstrate the major algorithms in data structures.
- Analyze performance of algorithms.
- > Discuss which algorithm or data structure to use in different scenarios.
- > Demonstrate the properties of various data structures such as stacks, queues, lists, trees.
- Demonstrate various sorting algorithms, including bubble sort, insertion sort, selection sort, heap sort, merge sort, quick sort.
- > Demonstrate understanding of various searching algorithms.

Learning Outcome: On completion of the course, students will be able to:

- > Distinguish between linear and non-linear data structure.
- > Apply non-linear data structure in appropriate areas.
- > Apply various sorting and searching algorithms in different problems.

Part A : Theory (TH:2.2)

Total Marks: 100

(In Semester Evaluation -40 & End Semester Evaluation -60)

Unit 1:Introduction & Basic of Data Structure

Data structure, algorithms, Primitive and Composite data types, Time and Space Complexity of Algorithms, Linked List, Stack, Queues implementation using Array and linked list, Insertion, Deletion and Traversal of linked list. Recursion and its implementation with reference to stack.

Unit 2:Sorting& Searching Algorithms

Introduction to Sorting and its practical use, Sorting Algorithms and its implementation Bubble sort, Insertion sort, Selection Sort, Quick sort, Merge sort and Radix Sort. Introduction to Searching algorithms, Linear search, Binary search, depth first search and breadth first search techniques.

Unit 3:Introduction to Trees

Introduction to Trees, properties of Trees, Binary Tree, Complete Binary Trees, Binary search Trees, Tree traversal methods(pre order, in order, post order),Infix, Postfix and Prefix Notations, basic concept of Heap.

Unit 4:Hashing and Collision

Hash tables, Hash functions, collisions, collision resolution.

Unit 5:File Structure

Concept of Fields, Records and Files, Blocks, Clusters, Sectors. Indexed Sequential Access Method(ISAM)

Marks:12

Marks: 12

Marks: 12

Marks: 12

- 1. Tenenbaum A. M.,"Data Structures Using C", Pearson, 2nd Edition, 2009.
- 2. Baluja, G. S."*Data Structure through C++*", Dhanpat Rai Publication, 2012.

Reference Books:

- 1. Lipschutz, Seymour"Data Structures", T. M. Hill, 2010.
- 2. Weiss, Mark Allen "Data Structures and Algorithm Analysis in C++", Pearson, 4th Edition, 2012

Part B: Practical (PR:2.2)

	(Credit	;
L:0	T:0	P:4	Total:2
	Tatal	Manl	

Total Marks: 50

(In semester evaluation 20 & End semester evaluation 30)

- ▶ Write programs to implement different operations on 1-D and 2-D arrays.
- > Write programs to implement stack, queue, linked-lists.
- > Write programs to implement sorting and searching algorithms.
- ➢ Write programs to implement BST.

Discussion:

Emphasis should be given to linked list, stack and queue, tree, searching and sorting algorithms.

Course No: 2.3	Course Name: Accounting And	Credits			
	Financial Management	L-2	T- 1	P-0	Total: 3

This course is designed with an objective so that the students will be able to

- Discuss basics of accounts and accounting.
- > Explain basics of finance and financial management.
- > Apply financial tools for taking certain decisions.
- > Describe application of computer in accounting and finance

Learning Outcome:

At the end of the course, students are expected to be able to discuss the concept of Accounting and Financial Management with practical Approach.

SYLLABUS

Total Marks: 100 (In Semester Evaluation –25 & End Semester Evaluation –75)

Unit-1: Marks: 20 Meaning and definition of accounting, parties or users interested in accounting, branches of accounting. Accounting concepts and conventions. Basic accounting terminologies, Classification of accounts, Journal entry, ledger posting and balancing of ledger. Subsidiary books – meaning and importance, preparation of cash book (Triple Column).

Unit-2:

Trial Balance-concept, objectives: Financial statements-meaning, objectives, preparation of Trading and Profit and Loss Accounts, Balance Sheet of sole trading concern. Classification of Assets and Liabilities. Depreciation-meaning, causes, accounting for depreciation. Accounting software-Tally (introductory part).

Unit-3:

Financial Management-meaning and objectives, functions of financial management. Concept of capital structurecomputation of Cost of Capital; Management of Working capital-need of working capital, operating cycle, sources of working capital.

Unit-4:

Budget and Budgetary Control-definition, objectives of budget, classification, advantage, characteristics of budget. Preparation of production/sales and cash budget. Capital Budgeting-meaning, importance and methods of capital budgeting. Concept of Marginal costing; Cost-Volume-Profit analysis, Break-even Point.

Credit	Part-B Practical (PR:2.3)					
	Credit					
L:0 T:0 P:2 Total:1	L:0 T:0	P:2	Total:1			

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation –30) Practical implementation using TALLY.

Marks: 15

Marks: 20

Marks: 20

\triangleright

- 1. B.B.Dam; R.A.Sarda; R.Barman; B.Kalita: "*Theory and Practice of Accountancy (V-I)*", Capital Publishing Company, Guwahati.
- 2. C.M.Juneja; R.C.Chowla; K.K.Saxena; "Book-Keeping and Accountancy (V-I)", Kalyani Publishers, Ludhiana..

Reference Books:

- 1. R.K.Sharma; S.K.Gupta: "Management Accounting". Kalyani Publishers, Ludhiana.
- 2. M.Y. Khan; P.K.Jain: "Principles of Financial Management". Tata McGraw Hills, New Delhi

Course Code :2.4	Course Name:	Credits				
	Computer Architecture &	L:2	T:1	P: 0	P: 0 Total:3	
	Organisation					
Objective: This course is designed wi ➤ Describe the basic st	ith an objective to ructure and operation of a digital compu	iter.				
	nt ways of communicating with I/O devi		nd star	ndard I/	0	
Learning outcome:						
-	ourse, the students will be able to					
 Describe different co 						
	mance architecture design.					
Develop independen	t learning skills and be able to illustrate	more	about	differe	nt	
computer architectur	es and hardware.					
Create an assembly	language program to program a microp	rocess	or sys	tem.		
	PART-A Theory (TH:2.4)					
	Total Marks: 100					
(In Semes	ter Evaluation –40 & End Semester Eva	luatio	on –60)		
Unit I: Introduction to Con	-]	Marks :10	
Von Neumann Architecture	, generation of computers.			_		
	Commentant				Marks :12	
Unit II: Organization of a Central Progressing Unit (Hardwired and Micro-progr	(CPU), Register, Stack, Simple ALU	orga	nizatio	on, Coi	ntrol Unit:	
Unit III: Memory Organiz Primary memory, Seconda translation virtual to physica	ry memory, Cache Memory, Mappin	ng, vi	rtual		Marks: 12 y: address	
Unit IV: I/O Organization Modes Of Transfer: Progra (IOP), Peripherals, Buses: B	amme driven, Interrupt driven I/O, D	MA, İ	Input		Marks :12 Processor	
Unit V: Assembly languag Addressing modes, Instruct microprocessor 8085.	e programming: ion formats, Instruction types, Assemb	oly lar	iguage		Marks :14 amming of	

PART-B Practical (PR:2.4)

(Credit	t

T:0 P:2 Total:1

Total marks-50

(Insem-20 & Endsem-30)

Write Assembly language programming of 8085

Using arithmetic and logical instructions

L:0

- Memory related operations
- Data transfer operations

Text Books:

- 1. Mano M.M, "Computer System Architecture", Pearson, 3rd Edition, 2007.
- 2. Hamacher.V.C., Vranestic, Z.G. and Zaky, S.G. "Computer Organization", McGraw-Hill,5th Edition, 2011.

Reference Books:

- 1. Hamachar C, Vranesic Z, Zaky S, Manjikian N, "*Computer organization & Embedded Systems*", Mc Graw Hill International Edition, 6th Edition, 2007.
- 2. Ram B, "Fundamentals of Microprocessors and Microcomputers", 5th edition, Dhanpat Rai Publications, 2012.
- 3. Gaonkar R.S.,"*Microprocessor Architecture, Programming and Applications with* 8085A",Penram International Publishing,5th Edition, 2000.

Discussion:

Microprocessor 8085.

Course Code:	Course Name:		Credits:						
2.5	Object Oriented Programming Using Java	L: 3	3	T:	0	P: 0	Total: 3		

The course is designed with an objective to:

- > Explain Object-Oriented programming concepts and techniques using Java Programs.
- > Explain exception handling and multithreading in Java,
- Demonstrate core Java Programs.

Prerequisite:

Basic knowledge of coding.

Learning Outcome:

On completion of the course, students will be able to:

- > Implement the OOP concepts of encapsulation, inheritance and polymorphism in java.
- > Apply Java programming syntax, control structures and Java programming concepts.
- Develop Java programs.
- Differentiate Object Oriented approach from Procedural Approach

PART-A Theory (TH:2.5)

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation-60)

Unit I: Introduction to Java

Java overview, Difference between JDK, JRE and JVM, Internal Details of JVM, Variable and Data Type, Naming Convention, Garbage collection mechanism, Advantage of OOP, Encapsulation, Object and Class, Method Overloading, Constructor static variable, method and block, this keyword

Unit II: Inheritance, Packages and Interfaces

Inheritance, Method Overriding, super keyword, final keyword, Runtime Polymorphism, Abstract class, Wrapper classes, Java Array, String, String Buffer, String Builder, Interface, Package and Access modifiers.

Unit III: Exception Handling

Types of Exception, try and catch block, Multiple catch block, Nested try, finally block, throw keyword, Exception Propagation, throws keyword, Exception Handling with Method Overriding, Custom Exception

Unit IV: Multithreading

Multithreading, Life Cycle of a Thread, Creating Thread, Thread Scheduler, Sleeping a thread, Joining a thread, Thread Priority, Thread synchronization, wait, notify, notifyAll

Unit V: Collection

Collection Framework, ArrayList class, LinkedList class, ListIterator interface, HashSet class, LinkedHashSet class, TreeSet class, PriorityQueue class, ArrayDeque class, Map interface, HashMap class, Comparable and Comparator

Marks: 12

Marks: 12

Marks: 12

Marks: 12

PART-B Practical (PR:2.5)

Credit						
L:0	T:0	P:4	Total:2			

Total Marks: 50

(In Semester Evaluation -20 & End Semester Evaluation-30)

Basic Java Programs covering:

- ➢ Encapsulation
- > Inheritance
- > Polymorphism
- Exception handling
- Multithreading

Text Books:

- 1. Herbert, S,"The Complete Reference to Java", 9th edition, Tata McGraw Hill, 2014
- 2. Malhotra, S. and Choudhary, S, '*Programming in Java*', Second Edition, Oxford University Press, 2015.

Reference Books:

- 1. Eckel B, "Thinking in Java", Pearson, Reprint: 2014.
- 2. Blaha, M. R. and Rumbaugh, J., "*Object Oriented Modeling and Design with UML*", 2nd Edition, Pearson Education, Reprint-2015

Course no: 3.1	Course Name:	Credits						
	Mathematics III	L:	3	Т	`:	1	P: 0	Total: 4
Objective:								
This course is designed								
	sic notions of groups, rings, fi							
	phs as a modeling tool in com	-				~~~~	:	
\sim Describe graph &	tree concepts and their appli	cation	s in netw	VOT	s se	cur	ity.	
Learning outcome								
e	urse, students will be able to:							
-	ic structures like groups, ring	and fie	eld.					
Define the notion	n of vector space and describe	its var	ious pro	per	ties			
Solve problems b	by applying graph theoretic re	sults a	nd algor	ithr	ns.			
	Theory (TH:	3.1)						
	Total Marks:							
(In Ser	mester Evaluation – 40& End	Semes	ter Eval	luat	ion	-60))	
Unit I-Groups								Marks: 12
-	roup, subgroup, cyclic group,	exami	oles					1/101 K5: 12
Croups Groupord, sering	roup, subgroup, eyene group,	enum						
Unit II-Rings							Ν	Iarks: 12
e	ntary properties of a ring, theo	rems (without	pro	of).	, rii	ngs wit	h or withou
zero divisor, Integral Do	•••••			1		,	0	
, 8								
Unit-III Fields							\mathbf{N}	Iarks: 12
Fields-definition, theorem	ms (without proof), examples							
	· · · ·							
Unit IV-Vector Spaces]	Marks: 12
-	n, general properties of vector	· space	s, Eigen	Va	lue	s ar		
•	n, general properties of vector	· space	s, Eigen	Va	lue	s ar		
•	n, general properties of vector	· space	s, Eigen	Va	llue	s ai	nd Eige	
Vector spaces –definition Unit V-Graph Theory	n, general properties of vector ogies, simple graph, multigrap	-	-				nd Eige	en Vectors. Marks: 12
Vector spaces –definition Unit V-Graph Theory Graphs: Basic terminolo		hs and	weighte	ed g	grap	ohs,	nd Eige paths	en Vectors. Marks: 12 and circuit
Vector spaces –definition Unit V-Graph Theory Graphs: Basic terminolo	gies, simple graph, multigrap	hs and	weighte	ed g	grap	ohs,	nd Eige paths	en Vectors. Marks: 12 and circuit
Vector spaces –definition Unit V-Graph Theory Graphs: Basic terminolo shortest path in weighte	gies, simple graph, multigrap	hs and	weighte	ed g	grap	ohs,	nd Eige paths	en Vectors. Marks: 1 2 and circuit

- 1. Satyanarayana B., "Discrete Mathematics and Graph Theory", 2nd Edition, PHI,1996.
- 2. Tremblay P. J., Manohar R. "Discrete Mathematical Structure with Application to Computer Science", 1st Edition, McGraw-Hill, 2014.

Reference Books:

- 1. Lipschutz S. & Lipson M., , "*Discrete Mathematics*", 3rd Edition, Schaum's Outlines, Tata McGraw-Hill,2009.
- 2. Narsingh, Deo, "Graph Theory with Applications to Engineering and Computer Science (English)", New Edition PHI,2013.
- 3. Herstein I.N., "Abstract Algebra", 3rd Edition, John Wiley & Sons, 2014.

Discussion

- Basic Ideas.
- Illustrative Examples.
- Proof of theorems not required.

Course Code:	3.2	Course Name:					
		Formal Language and Automata Theory	L: 3	T: 1	P: 0	0 Total: 4	
 Identify di 	fferent form	with an objective to nal language classes and their re l recognizers for different forma		1			
Learning Outcon	nes:						
On completion of	this course,	, the students will be able to:					
a certain la → Make trana automata, → Simplify a	anguage; sformation and regular utomata an	ular expressions and context-fre between equivalent determinist expressions; d context-free grammars; word belongs to a language or	ic and not			-	atir
(In Semes	PART-A Theory (TH:3.2) Total Marks: 100 ter Evaluation –40 & End Seme		uation-6	50)		
	ntroductior	n to NFA, equivalence of NFA a of finite Automata	nd DFA,	Finite 2		Marks: 2 ata with	20
Unit II: Regular I Introduction, Klee anguages, closure	ne closure,	Formal definition, Algebra of re	egular ex	pressio		Marks: llar	10
CFG and Parsing.	lassificatio	nmar n, CFG, Normal Forms of Conte Basic Structure of PDA, Corres ₁			r, Amb		1
CSL and LBA , Fo	ormal defin g Machine,	ny and Turing Machine ition of Turing Machine, Transi language of Turing Machine, T ierarchy.	-				ıd

- 1. Linz P ,"An Introduction to Formal Language and Automata", Jones and Bartlett Publishers, Inc., USA, 2011.
- 2. Misha, K. L. P. "Theory of Computer Science: Automata, Languages and Computation" PHI, 3rd Edition, 2009

Reference Books:

- 1. Nagpal C. K, "Formal Languages And Automata Theory", Oxford University Press, 2011
- 2. Hopcroft, J. E.; Motwani, R; Ullman, J.D, "*Introduction To Automata Theory, Language And Computation*", Addison Weisley, 3rd edition, 2013.

Discussion:

- Finite Automata
- Regular Language and Expression
- Context free Grammar, Push Down Automata (PDA)

Course no.:	Course Name:		Credits		
3.3	Software Engineering	L:3	T:0	P:0	Total:3

The course is designed with an objective to:

- > Demonstrate software process models such as the waterfall and evolutionary models.
- Discuss the role of project management including planning, scheduling, risk management, etc.
- > Define software engineering and explain its importance.

Learning Outcome:

On completion of the course, students will be able to:

- Create software from the root level starting from requirement gathering to maintenance with the appropriate SDLC.
- > Define software engineering and explain its importance.
- > Identify the processes to be followed in the software development life cycle.
- > Test software using testing approaches such as unit testing and integration testing.

Part A : Theory (TH:3.3)

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation –60)

Unit I: Introduction to Software Engineering:

Concept of a software project, size factor, quality and productivity factor, software process models, different phases of software development life cycle.

Unit II: Software Project Management

Software project management: Planning, scheduling, monitoring, controlling, requirement specifications.

Unit III: Software Design

Software design: Function oriented, object oriented approaches, user interfaces. Software programming: Structured coding techniques, coding styles, standard.

Unit IV: Verification, Validation & Testing

Software verification and validation, black box and white box approaches, integration and system testing.

Unit V: Software reliability& Maintenance

Definition and concept of reliability, software faults, errors, Repair and availability. Categories of Maintenance, Problem during maintenance.

Marks: 12

Marks: 12

Marks: 12

Marks: 12

	Part B :Practical (PR :3.3)
	L:0 T:0 P:4 Total:2
	Total Marks: 50
	(In semester evaluation 20 & End semester evaluation 30)
	Automated Testing of web pages using Selenium.
	Any other Laboratory work will be set in consonance with the material covered in th
,	course.
Text I	Books:
\triangleright	Rajiv M.,"Fundamentals Of Software Engineering", PHI Learning,4th Edition,2014.
	Pankaj J, "An Integrated Approach to Software Engineering", Narosa Publishing
	House, 3 rd edition, 2014
	ence Books:
	James K.L."Software Engineering", PHI Learning, 2 nd Edition, 2012.
\triangleright	Roger S. P., "Software Engineering: A Practitioner's Approach", McGraw Hill
	Publication, 8 th edition 2014.
Discu	ssion:
г 1	
Empha	asis should be given to the following topics:
	• SDLC models.
	 Software project management.
	• Functional vs Non-Functional requirements.
	Functional vs Non-Functional requirements.Data flow diagrams.
	• Data flow diagrams.
	Data flow diagrams.Software Metrics.
	• Data flow diagrams.

Course No: 3.4	Course Name:	Credits			
	Introduction to System Software	L: 2	T:1	P: 0	Total: 3

This course is designed with an objective to

- Explain the relationship between system software and machine architecture, design and implementation of assemblers, linkers and loaders.
- > Describe the design, function and implementation of assemblers, linkers and loaders.
- > Define macro processors and system software tools.
- Describe the design of a compiler and the phases of program translation from source code to executable code and the files produced by these phases.
- Explain lexical analysis phase and its underlying formal models such as finite state automata, push-down automata and their connection to language definition through regular expressions and grammars.
- > Explain the syntax analysis phase and identify the similarities and differences among various parsing techniques and grammar transformation techniques.

Learning Outcome:

At the end of the course, students are expected to be able to:

- > Identify the path of a source code to object code and to executable file.
- > Design the front end of the compiler-scanner, parser.
- > Identify the relationship between system software architecture and machine.
- Analyze the functions of assembler, compiler, linker, and loaders.
- > Design and implement loaders and linkers.

PART-A Theory (TH:3.4)

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation –60)

UNIT I: Overview:

Definition and classification of System Software, Distinction between System Software and Application Software, Layered organization of System Software.

UNIT II: Assembler:

Overview of the Assembly process, Design of Assembler: Two Pass Assembler & Single Pass Assemble

UNIT III: Macro

Introduction to Macros, Various types of Macros, Design of Macro Processor: Single Pass & Double Pass, Debugger and its features.

UNIT IV: Linkers & Loaders:

Introduction to Linkers & Loaders, Functions of a loader, Types of Loaders, Databases used in Loaders, Design of Loaders - Absolute & DLL.

UNIT V: Basics of Compiler:

A Simple Compiler, Difference between Interpreter, Assembler and Compiler, Types of Compiler, Analysis - Synthesis Model of compilation, The Phases of a Compiler, The Grouping of Phases, and Compiler - Construction Tools.

Marks: 12

Marks: 12

Marks: 12

Marks: 12

Part-B Practical (PR:3.4)							
Credit							
L:0 T:0 P:2 Total:1							

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation –30)

- > Demonstration on:Lex,Yacc and Make Utility
- Macro Coding, Debugger Exercise, Analysis of Executable Code

Reference Books:

- 1. Donovan, John J. "Systems Programming", Tata McGraw Hill Company, Second Edition, 2000.
- 2. Raghavan, V "Principles of Compiler Design", Tata McGraw Hill Education Publishers, 2010.

Course No: 3.5	Course Name:	Credits			
	Operating System	L: 3	T: 0	P: 0	Total: 3

This course is designed with an objective to

Discuss and explain the basic concepts of Operating System, process management, memory management, file management, Input / Output management and the potential problem of deadlocks.

Prerequisite: Nill

Learning Outcome:

At the end of the course, students are expected to be able to:

- Describe the general architecture of computers,
- Describe, contrast and compare differing structures for operating systems,
- Analyze theory of processes, resource control (concurrency etc.), physical and virtual memory, scheduling, I/O and files.

PART-A Theory (TH:3.5)

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation-60)

Unit I: Overview of Operating System

Operating System Concepts (Processes, Memory Management, Files, Deadlocks, Input/Output), System Structure

Unit II: Process Management

Introduction to Processes (The Process Model, Process Creation, Process Termination, Process States, Implementation of Processes, Process Control Block), Threads (The Thread Model, Thread Usage, Implementing Threads, Interprocess Communication (Race Condition, Critical Section, Mutual Exclusion, Semaphores)), Process Scheduling, Synchronization, Deadlock (Conditions for Deadlock, Deadlock Modeling), Deadlock detection and Recovery, Deadlock avoidance, Deadlock prevention.

Unit III: Memory Management

Memory management, Swapping, Allocation, Paging, Virtual Memory, Page replacement, Segmentation, TLB

Unit IV: Input/Output

I/O Systems overview, Principles of I/O hardware (I/O devices, Device Controllers, Direct Memory Access), Clocks and Timers, I/O scheduling

Unit V: File Systems

File System Structure, Layout (Implementing files, Implementing directories), File allocation, Free-Space Management

Marks:20

Marks:10

Marks:12

Marks:10

PART-B Practical (PR:3.5)

Credit					
L:0	T:0	P:4	Total:2		
	-	3.6.1	= 0		

Total Marks: 50

(In Semester Evaluation –20 & End Semester Evaluation-30)

- Introduction to Linux
- ➢ File systems
- Simple Linux commands
- > Shell programming
- Programming on process management

Text Books:

- 1. Stallings W., "Operating systems" 2/e, Prentice Hall, 1995.
- 2. Silberschatz A., Galvin P.B, "Operating System Concepts" 5/e, Addison-Wesley Publishing Company, 1998.
- 3. Deitel H.M., "Operating System" 2/e Addison-Wesley Publishing Company 1990.

Reference Books:

- 1. Tanenbaum A.S., "Modern Operating Systems", 2/e, Prentice Hall of India, New Delhi, 2002.
- 2. Chandra P., Bhatt P., "An Introduction to Operating Systems Concept", Prentice Hall of India, 2006.

Discussion:

- 1. Operating System concepts
- 2. Process Management
- 3. Conditions for deadlock, recovery of deadlock and deadlock avoidance
- 4. I/O scheduling, Device Controller, DMA
- 5. File allocation and Free Space Management

Course No:4.1	Course Name:		Credits				
	Introduction to Artificial	L-2	T-1	P-0	Total-3		
	Intelligence						

The course is designed with an objective to

- Discuss about Artificial Intelligence and its importance.
- > Explain Problems and Heuristic Searches.
- Illustrate Knowledge representation and Predicate logic.

Learning Outcome:

On completion of the course, students will be able to:

- Identify different types of AI agents.
- > Apply various AI search algorithm
- Comprehend fundamentals of knowledge representation
- > Apply predicate logic

PART-A : Theory (TH:4.1)

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation –60)

Unit I: Overview of A.I:

Introduction to AI, Importance of AI, AI and its related field (Machine Learning), AI techniques, Criteria for success.

Unit II: Problems, problem space and search:

Defining the problem as a state space search, Production system and its characteristics, Issues in the design of the search problem.

Unit III: Heuristic search techniques :

Generate and test, hill climbing, best first search technique, problem reduction, constraint satisfaction.

Unit IV: Predicate Logic :

Representing Simple Facts in logic, Representing instances and is_a relationship, Computable function and predicate.

Unit V: Knowledge Representation:

Definition and importance of knowledge, Knowledge representation, Various approaches used in knowledge representation, Issues in knowledge representation.

Text Books:

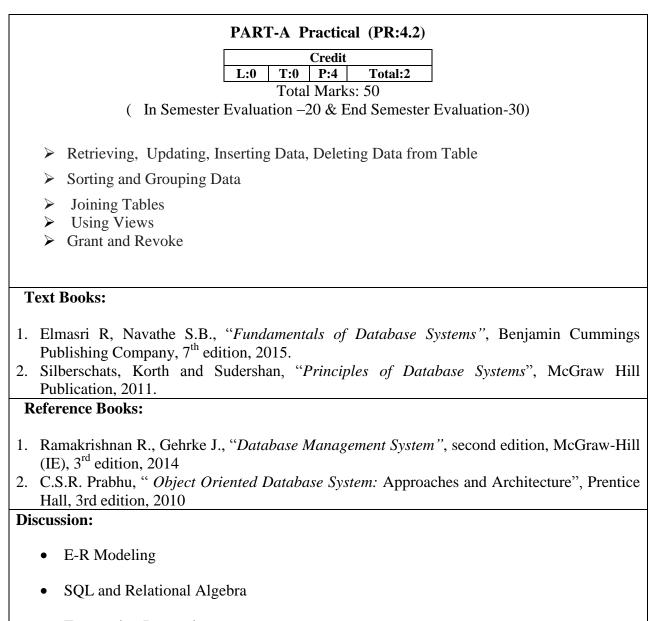
- 1. David W. Rolston, "Principles of Artificial Intelligence and Expert System Development", McGraw Hill, 2012.
- 2. Elaine Rich, Kevin Knight : "Artificial Intelligence", Tata McGraw Hill, 2013.

Reference Books:

- 1. D.W. Patterson, "Introduction to AI and Expert Systems", PHI, 2012.
- 2. Nils J Nilsson, "Artificial Intelligence A new Synthesis", 2nd Edition, Harcourt Asia Ltd., 2011.

Marks 12

Marks 12


Marks 12

Marks 12

Discussion:

- AI general problem solving
- Fundamentals of AI Searches
- Basics of Knowledge Representation
- Basics of Logic

	Course Name:	Credit	ts				
	Database Management System	L: 3	T:0 P:0 Tot	al: 3			
Objective:							
The course is designed							
Construct simple and moderately advanced database queries using Structured Query							
Language (SQ							
	al database design principles, incl	luding E-R	diagrams and da	itabase			
normalization.							
Learning Outcomes:							
	his course, the student will be able to:						
on completion of th							
• Describe the p	principles of the relational database Acc	cess					
Define and ma	anipulate data using SQL						
Construct and	l normalize conceptual data models.						
		•					
	PART-A Theory (TH:4) Total Marks: 100	.2)					
(In	Semester Evaluation –40 & End Seme	ester Evaluat	ion-60				
(II	Semester Evaluation 40 & End Seme		1011-00)				
Unit I: Database Sys	stem Concepts and Architecture		Marks:	10			
	rk data model, hierarchical data model e languages and interfaces, classif						
Unit II: Data Modeli	ing Using E-R Model:		Marks	s:10			
Unit II: Data Modeli E-R model concept, E			Marks	5:10			
E-R model concept, E	E-R diagram						
	E-R diagram		Marks Mark				
E-R model concept, E Unit III: Relational Relational model con-	E-R diagram	1	Mark	s:20			
E-R model concept, E Unit III: Relational Relational model con-	E-R diagram Data Models: cepts, relational model constraints, upo llgebra, Relational database languages:	1	Mark	s :20 efining			
E-R model concept, E Unit III: Relational I Relational model con- relations, Relational a Unit IV: Database D	E-R diagram Data Models: cepts, relational model constraints, upo llgebra, Relational database languages:	SQL	Mark ns on relations, de	s :20 efining			
E-R model concept, E Unit III: Relational I Relational model con- relations, Relational a Unit IV: Database D Functional dependenc	E-R diagram Data Models: cepts, relational model constraints, upo lgebra, Relational database languages: Design:	SQL	Mark ns on relations, de	efining s:10			

• Transaction Processing

Course no:4.3	Course Name:		Credits		
	Data Communication and	L: 3	T:1	P: 0	Total: 4
	Computer Network				

The course is designed with an objective to

- Introduce Data Communications and Computer Networks.
- Enable students to design and deployment of networks.

Prerequisite:

Course : Nil

Learning Outcome:

On completion of the course, students will be able to:

- > Describe various concepts of data communication and computer networks.
- > Illustrate the Layers of ISO/OSI and TCP/IP reference model.
- Design , install and deploy networks

PART-A Theory (TH:4.3)

Total Marks: 100

(In Semester Evaluation -40 & End Semester Evaluation -60)

Unit I:

Introduction to computer networks, analog and digital transmission, parallel and serial communication, Asynchronous and synchronous communication, modes of communication: simplex, half duplex & full duplex. Multiplexing,

Transmission media: guided and unguided media

Types of networks, Network topologies, Network reference models.

Unit II:

Switching technologies, Error control & detection mechanisms. Data link layer : flow control and access protocol, MAC

Unit III:

Network layer : Routing protocols, Internet protocol, IP addresses. Transport layer : TCP & UDP

Unit IV:

Presentation layer : Character code translation, Data conversion, Data compression, Data encryption.

Application layer : Resource sharing ,Remote file access, Remote printer access, Inter-process communication, Directory services, Electronic messaging (such as mail),Network virtual terminals

Marks:14

Marks: 22

Marks: 14

Part-B Practical (PR:4.3)						
Credit						
L:0	T:0	P:2	Total:1			

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation –30)

- ➤ LAN setup
- Network Configuration and Settings
- Network Management

Text Books

- 1. Tenanbaum A.S., "Computer Networks", Pearson Education Asia, 4th Ed., 2011.
- 2. Behrouz A. F, "Data Communication and Networking", Tata Mc Graw Hill, 6th edition, 2014

Reference Books

- 1. Bhusan T," *Data Communication and Networks* ",Oxford University Press 1st Edition, 2016
- 2. William S, "Data and computer communications", Pearson education Asia, 7th Edition, 2011.

Discussion

- Application : FTP, Telnet , Internet
- Hands on practice to develop small application with the available lab devices

Course no: 4.4	Course Name:	Cre	edits			
	Scientific Computing using Mathematical Software	L:	2	T: 0	P:0	Total:2
Objective:						
This course is des	igned with an objective to					
MakeInterpr	the students develop computer programs. The students develop computer programs. The reliability of numerical results, n the possible uses of numerical methods,	-	-			
Learning Outcor On completion of	nes: f the course the student will be able to					
Design alg	umerical methods that account for accurac gorithms to solve numerical problems. odes for numerical methods.	y, conv	ergenc	e and st	tability.	
	PART-A Theory (TH:4.	.4)				
(Total Marks: 50 In Semester Evaluation –20 & End Semes	ster Eva	luatio	n –30)		
Unit I – Matlab I Introduction, Syn elements of Array	ntax, Variables, Commands, M-Files,	Data T	ypes,	Operat		rks:10 ccessing
Unit II– Function Mathematical fun	ns and Loops ctions, Creating and Scripts and functions,	Loopin	g strue	cture.	Mai	rks:10
Unit III – Root F Iterative methods	inding - bisection, false-position, Newton- Raph	son; Ro	ots of	a Polyn		ks:10
Unit IV – Interpe Newton's Forwar	olation d Differences and Lagrange's Polynomials	s-Linea	r interj	polation		ks:10
Unit V – Matrice Initializing matric of Matrices.	es within MATLAB, Matrix operations ar	nd funct	tions,	Operatio		• ks:10 elements

PART-B Practical (PR 4.4) Credit T:0 P:4 Total:2 L:0

Total marks:50

(In Semester Evaluation –20 & End Semester Evaluation –30)

Solving Mathematical Problems using Matlab

Text Books:

- 1. Chapra S. C., Canale R.P., "Numerical Methods for Engineers",6th Edition, McGraw Hill Higher Education, 2009.
- 2. Bansal R.K., Goel A.K., Sharma M.K., "Matlab and its applications in Engineering" Kindle Edition, Pearson, 2009.

Reference Books:

- Haribhaskaran G., "Numerical Methods", 2nd edition, Laxmi Publications, 2011.
 T. Sauer., "Numerical Analysis", 2nd Edition, Pearson New International Edition,2013.

Course Code: 5.1	Course Name:	Cr	edits			
	Introduction to Computer Graphics	L:	2	T: 1	P: 0	Total:3
Objective:		•				•
The Course is design with an	n objective to:					
Discuss different gra	aphics packages, demonstrate fund	ction	alitv c	of displa	v device	s.
-	f computer graphics including har		•	-	•	
 Illustrate how an anii 			,		11	
Write program function	ions in C to implement different g	graphi	ics pri	mitives		
Prerequisites:						
 Basic knowledge of a 	display devices					
/ Dusie knowledge of (alsping devices					
Learning outcome:						
On completion of this course	a students will able to:					
On completion of this course	e students will able to.					
Develop graphical a	lgorithm to design different graph	nical 1	oatter	n		
 Develop graphical a Design simple graphical 	• • • •	lieur	<i>accon</i>			
0 1 0 1	ng problem using graphics packag	ges.				
	PART-A Theory (TH:5.1	l)				
	Total Marks: 100					
(In seme	ster evaluation 40 & End semeste	er eva	luatio	n 60)		
Unit I: Introduction					Ma	rks: 15
	n: Video display devices, input de					
-	ables, Pointing and positioning de	evice	s (cu	rsor, lig	ht pen, o	ligitizing
4 - 1 + 1 + 4 + 1 + 2 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1						0
tablet, the mouse, track ball	s)					0 0
	s)				Ma	
Unit II: Output primitives		enerat	ing a	lgorithm		rks: 15
Unit II: Output primitives Points and lines, line drawin	g algorithms, circle and ellipse ge	enerat	ing al	lgorithm	IS	arks: 15
Unit II: Output primitives Points and lines, line drawin Unit III: Geometrical trans	g algorithms, circle and ellipse ge		-	-	is Ma	arks: 15 arks: 15

clipping, line clipping, Text clipping.

Unit IV: Animation and Multimedia

Introduction to computer animation and virtual reality Introduction to multimedia and its components, Basic concept of Image, Different multimedia components and file formats, Animation components, morphing and application, Graphics tools, image editing tools.

Text Books:

- 1. Hearn D and Baker M.P., "Computer Graphics", PHI 2/e, 2011
- 2. Godse, A. P. "Computer Graphics And Multimedia (English)", Technical Publication ,1st Edition ,2011

Reference Books:

- 1. Chopra R," Computer Graphics", Kindle 2ndEdition, 2010
- 2. Harrington S,"Computer Graphics", Indian Edition, 2014

PART-B Practical (PR:5.1)

		Credit	t
L:0	T:0	P:2	Total:1

(In semester evaluation 20 & End semester evaluation 30)

- > Implement of the line ,circle drawing algorithm using "C"
- ➤ Implement of polygon and ellipse algorithms using "C"
- Implementation of clipping algorithm

Discussion:

- Functionality of Display devices
- Graphical algorithms
- 3-D and 2-D graphical representation

Course Code: 5.2	Course Name:	Credi	ts			
	Operations Research	L:2	T:	1	P:0	Total:3
Objective: This course is designed	ed with an objective to					
	lefinition, scope, objectives, phases, n	nodels &	limit	atio	ns of o	perations
research	monogonial puchlama in industry of t	hat that a				****
•	managerial problems in industry so the materials, staffing, and machines) more			jie i	lo use	resources
· · ·	raphical method, simplex method and du	•				
Solve tran	sportation problem.	·				
Describe h	now to write case study report.					
Learning outcome						
On completion of the	course students will be able to:					
	mportance and value of Operations Re	esearch and	d ma	then	natical	modeling
01	ctical problems in industry.					
Model mather	matically real life managerial decision n	naking prob	olems	5.		
-	tools to solve a mathematical model for	r a practica	l pro	blen	n.	
 Construct case 	e study report.					
	PART-A Theory (TH:5.2	2)				
	Total Marks: 100					
(In	Semester Evaluation -40 & End Semes	ter Evaluat	ion –	-60)		
Unit I Model Form	ulation				Ma	arks: 12
	are and assumption of an Linear H	Programmi	ng r	orob		
	of linear programming problem.					,
Unit II Graphical S	olution Method				Ma	arks: 12
	tions, graphical solution method of	an LP pr	obler	n, r	nultiple	optimal
solution, unbounded s	solution, Infeasible solution.					
Unit III Simplex Mo	ethod				\mathbf{N}	larks: 12

Introduction, standard form of LP problem, simplex algorithm (maximization case), Simple Algorithm (Minimization case), multiple Optimal solution, Unbounded Solution

Unit IV Duality

Introduction, Formulation of dual linear problem, standard results on duality, advantage of duality.

Unit V Transportation Problem

Introduction, Loops in transportation table and their properties, transportation method, Linear programming formulation of the transportation problem.

PART-B Practical (PR 5.2)							
Credit							
L:0	T:0	P:2	Total:1				

Total marks:50

(In Semester Evaluation –20 & End Semester Evaluation –30)

- Computer application of Operations Research methods
- ➤ Case studies.

Text Books:

- 1. Sharma K. J., "Operation Research Theory and Application", 3rd Edition, MacMillan India Ltd.2014.
- 2. Havinal V. "Introduction to Operations Research", 1st Edition, New Age International Publishers.2012

Reference Books:

- 1. Bronson R., *Operation Research*; 2nd Edition, McGraw Hill.1997.
- 2. Sharma K.J., " *Operation Research: Problems and Solutions*", 3rd Edition, Macmillan Publishers ,2016.

Course Code:	Course Name:		Cı	redits	
5.3	Internet & Web Programming	L:2	T: 1	P:0	Total:3
	Technology				
Objective: The cours	e is designed with an objective to		•	•	
Design a webj	page using HTML and CSS.				
Make an inter	active webpage using JavaScript.				
Use Server side	le scripting language to make a dynamic	webpage.			
Learning Outcome:	On completion of the course, students wa	ill be able	e to:		
•••	nic and interactive web pages by embeddir ript to validate user input.	ng Java S	Script co	ode in H	ITML and
Apply CSS in	WebPages.				
Recognize the	HTML and XML DOM.				
Create website	e using Server Side Scripting language.				
Apply AJAX	in WebPages.				
	PART-A Theory (TH:5.3)	,			
	Total Marks: 100				
(I	n semester evaluation 40 & End semester	evaluation	on 60)		
Unit 1: Introduction	to Internet			Maı	:ks: 12
History of Internet	, Structure of Internet (include clien	nt serve	r archi	tecture)	, Internet
Terminologies (www	, URL, search engine, bandwidth, brows	er, cooki	es, don	nain nar	ne service.
IP address, website an	nd its components, telnet etc.), protocols,	types of j	protoco	ls(http,	https, ftp).
Unit 2: DOM & XM	L			Ma	rks: 12
Introduction to Docu XML. Applications o	iment Object Model(DOM), hierarchy of f XML.	objects	in DON	A. Intro	duction to

Unit 3: HTML & CSS

Introduction to HTML. Webpage Elements, attributes, heading, paragraphs, images, tables, lists, forms. Basic of CSS, Add style to document, Creating Style sheet rules, Style sheet properties, Font, Text, List, Color and background color, Box, Display properties.

Unit 4: Introduction to Client-Side Scripting language

Introduction to Client side scripting language, Javascript, Advantage of Javascript, Javascript Syntax, Datatype, Variable, Array, Operator and Expression, Loop, Function, Dialog box, event handling using javascript, form validation. Introduction to Ajax and VB Script.

Marks:12

Unit 5:Introduction to Server-Side Scripting language Marks: 12 Introduction to Server side scripting language, Introduction to ASP, JSP, PHP. Development of WebPages using javascript and any one server side scripting language. **Text Books:** 1. Hahn, H, "The Internet Complete Reference", Mcgraw-Hill Osborne Media,2nd Edition,2002 2. Roy U.K, "Web Technologies", Oxford University Press,1st edition, 2010. **Reference Books:** 1. Robin N, "Learning PHP, MySQL & JavaScript with jQuery, CSS k *HTML5*",O'Reilly,2014,4th Edition. 2. Phillip H,"JSP 2.0: The Complete Reference", Mcgraw Hill.2nd Edition,2003. 3. Bill E, Scott H, Farhan M, "Professional ASP.NET 2.0",4th Edition,2005. Part B(Practical) PR:5.3 Credit T:0 P:4 Total:2 L:0 Total Marks: 50 (In semester evaluation 20 & End semester evaluation 30) > Design dynamic and interactive web pages to validate user input. ➢ Apply CSS,Ajax in WebPages. > Apply PHP in a webpage. **Discussion:**

Emphasis should be given on designing web pages uding JavaScript and any one server side scripting language.

Course no:	Course Name:		Cre	dits	
TH:5.4	Cloud Computing	L: 2	T:1	P: 0	Total: 3

Objective:

The course is designed with an objective to

- > To introduce the broad perceptive of cloud architecture and model
- > To understand the concept of Virtualization.
- > To be familiar with the lead players in cloud.
- > To understand the features of cloud simulator
- > To apply different cloud programming model as per need.
- \succ To be able to set up a private cloud.
- > To understand the design of cloud Services.
- > To learn to design the trusted cloud Computing system

Learning Outcome:

On completion of the course, students will be able to:

- Compare the strengths and limitations of cloud computing
- > Identify the architecture, infrastructure and delivery models of cloud computing
- > Apply suitable virtualization concept.
- Choose the appropriate cloud player.
- > Choose the appropriate Programming Models and approach.
- Address the core issues of cloud computing such as security, privacy and interoperability Design Cloud Services
- Set a private cloud

PART-A Theory (TH:5.4)

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation –60)

Unit I : Cloud Architecture And Model

Technologies for Network-Based System – System Models for Distributed and Cloud Computing – NIST Cloud Computing Reference Architecture. Cloud Models:- Characteristics – Cloud Services – Cloud models (IaaS, PaaS, SaaS) – Public vs Private Cloud –Cloud Solutions - Cloud ecosystem – Service management – Computing on demand.

Unit II: Virtualization

Basics of Virtualization - Types of Virtualization - Implementation Levels of Virtualization - Virtualization Structures - Tools and Mechanisms - Virtualization of CPU, Memory, I/O Devices - Virtual Clusters and Resource management – Virtualization for Data-center Automation.

Unit III: Cloud Infrastructure

Architectural Design of Compute and Storage Clouds – Layered Cloud Architecture Development – Design Challenges - Inter Cloud Resource Management – Resource Provisioning and Platform Deployment – Global Exchange of Cloud Resources.

Marks:12

Marks:12

Unit IV : Programming Model

Marks:12

Parallel and Distributed Programming Paradigms – MapReduce , Twister and Iterative MapReduce – Hadoop Library from Apache – Mapping Applications - Programming Support - Google App Engine, Amazon AWS - Cloud Software Environments -Eucalyptus, Open Nebula, OpenStack, Aneka, CloudSim

Unit V : Security In The Cloud

Marks:12

Security Overview – Cloud Security Challenges and Risks – Software-as-a-Service Security – Security Governance – Risk Management – Security Monitoring – Security Architecture Design – Data Security – Application Security – Virtual Machine Security - Identity Management and Access Control – Autonomic Security.

Text Books

- 1. Kai Hwang, Geoffrey C Fox, Jack G Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.
- 2. John W.Rittinghouse and James F.Ransome, "Cloud Computing: Implementation, Management, and Security", CRC Press, 2010.

Reference Books

- 1. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing, A Practical Approach", TMH, 2009.
- 2. Kumar Saurabh, "Cloud Computing insights into New-Era Infrastructure", Wiley India, 2011

BCA 6th Semester

	PART- A (MAJOR PROJCT)									
TH No.	Subject	Project Work	Viva-Voce	Presentation/ Report	Total	Credit				
TH 6.1	Major Project	200	50	50	300	20				

FIRST SEMESTER

	PART-	A (THEO	RY)		
TH No.	Subject	Lecture (working hours/ week)	Tutorial (working hours/ week)	Practical (working hours/ week)	Credit
TH 1.1	Fundamental of Computers	3	1	0	4
TH 1.2	Mathematics - I	3	1	0	4
TH 1.3	Digital Design	3	1	0	4
TH 1.4	Communication Skills & Personality Development	3	1	0	4
TH 1.5	Programming with C	2	1	0	3
	PART- B	(PRACTI	CAL)		
PR 1.1	Fundamental of Computers	0	0	2	1
PR 1.3	Digital Design	0	0	2	1
PR 1.5	Programming with C	0	0	4	2
			То	tal Credits	23

SECOND SEMESTER

	PART-	A (THEO)	RY)		
TH No.	Subject	Lecture (working hours/ week)	Tutorial (working hours/ week)	Practical (working hours/ week)	Credit
TH 2.1	Mathematics -II	3	1	0	4
TH 2.2	Data Structure	3	0	0	3
TH 2.3	Accounting & Financial Management	2	1	0	3
TH 2.4	Computer Architecture & Organization	2	1	0	3
TH 2.5	Object Oriented Programming using JAVA	3	0	0	3
	PART- E	B (PRACTI	CAL)		
PR 2.2	Data Structure	0	0	4	2
PR 2.3	Accounting & Financial Management	0	0	2	1
PR 2.4	Computer Architecture & Organization	0	0	2	1
PR 2.5	Java Programming	0	0	4	2
			То	tal Credits	22
	COMPU	JLSORY PA	PER		
ENVS	Environmental Studies				

THIRD SEMESTER

	PART	- A (THEO	RY)		
TH No.	Subject	Lecture (working hours/ week)	Tutorial (working hours/ week)	Practical (working hours/ week)	Credit
TH 3.1	Mathematics - III	3	1	0	4
TH 3.2	Formal Language & Automata	3	1	0	4
TH 3.3	Software Engineering	3	0	0	3
TH 3.4	Introduction to System Software	2	1	0	3
TH 3.5	Operating System	3	0	0	3
	PART-	B (PRACTI	CAL)	· · · ·	
PR 3.3	Software Engineering	0	0	4	2
PR 3.4	Introduction to System Software	0	0	2	1
PR 3.5	Operating System	0	0	4	2
	1	1	То	tal Credits	22

FOURTH SEMESTER

	PART-	A (THEOI	RY)		
TH No.	Subject	Lecture (working hours/ week)	Tutorial (working hours/ week)	Practical (working hours/ week)	Credit
TH 4.1	Introduction to Artificial Intelligence	2	1	0	3
TH 4.2	Database Management System	3	0	0	3
TH 4.3	Data Communication & Computer Networks	3	1	0	4
TH 4.4	Scientific Computing using Mathematical Software	2	0	0	2
	PART- B (PRACTIC	AL/ MINO	OR PROJE	CT -I)	
PR 4.2	Database Management System	0	0	4	2
PR 4.3	Data Communication & Computer Networks	0	0	2	1
PR 4.4	Scientific Computing using Mathematical Software	0	0	4	2
PR 4.5	Minor Project	0	0	8	4
	1			tal Credits	21

FIFTH SEMESTER

PART- A (THEORY)								
TH No.	Subject	Lecture (working hours/ week)	Tutorial (working hours/ week)	Practical (working hours/ week)	Credit			
TH 5.1	Introduction to Computer Graphics	2	1	0	3			
TH 5.2	Operations Research	2	1	0	3			
TH 5.3	Internet & Web Programming	2	1	0	3			
TH 5.4	Cloud Computing	2	1	0	3			
	PART- B (PRACTIC	CAL/ MINO	R PROJE	CT -II)				
PR 5.1	Computer Graphics	0	0	2	1			
PR 5.2	Operations Research	0	0	2	1			
PR 5.3	Internet and Web Programming	0	0	4	2			
PR 5.5	Minor Project II	0	0	10	5			
			То	tal Credits	21			

SIXTH SEMESTER

PART- A (MAJOR PROJCT)									
TH No.	Subject	Lecture (working hours/ week)	Tutorial (working hours/ week)	Practical (working hours/ week)	Credit				
TH 6.1	Major Project	-	-	-	20				
Total Credits									